
Package: viewscape (via r-universe)
March 11, 2025

Type Package

Title Viewscape Analysis

Version 2.0.1

Description A collection of functions to make R a more effective
viewscape analysis tool for calculating viewscape metrics based
on computing the viewable area for given a point/multiple
viewpoints and a digital elevation model.The method of
calculating viewscape metrics implemented in this package are
based on the work of Tabrizian et al. (2020)
<doi:10.1016/j.landurbplan.2019.103704>. The algorithm of
computing viewshed is based on the work of Franklin & Ray.
(1994)
<https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
555780f6f5d7e537eb1edb28862c86d1519af2be>.

URL https://github.com/land-info-lab/viewscape

BugReports https://github.com/land-info-lab/viewscape/issues

Depends R (>= 4.2)

License GPL-3

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Language en_GB

Suggests testthat (>= 3.0.0), knitr, rmarkdown

Config/testthat/edition 3

VignetteBuilder knitr, rmarkdown

Imports Rcpp, rlang, methods, dplyr, sf, sp, terra, ForestTools (>=
1.0.1), parallel, pbmcapply

LinkingTo Rcpp

1

https://doi.org/10.1016/j.landurbplan.2019.103704
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=555780f6f5d7e537eb1edb28862c86d1519af2be
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=555780f6f5d7e537eb1edb28862c86d1519af2be
https://github.com/land-info-lab/viewscape
https://github.com/land-info-lab/viewscape/issues

2 calculate_diversity

Config/pak/sysreqs libfftw3-dev libgdal-dev gdal-bin libgeos-dev
libglpk-dev libicu-dev libjpeg-dev libpng-dev libtiff-dev
libxml2-dev libssl-dev libproj-dev libsqlite3-dev
libudunits2-dev libx11-dev

Repository https://land-info-lab.r-universe.dev

RemoteUrl https://github.com/land-info-lab/viewscape

RemoteRef HEAD

RemoteSha 53b84d253f7148b0c9e51b8b09c209cd2cec25a8

Contents
calculate_diversity . 2
calculate_feature . 3
calculate_viewmetrics . 4
compute_viewshed . 6
fov_mask . 8
Viewshed-class . 9
visualize_viewshed . 9
visual_magnitude . 10

Index 12

calculate_diversity calculate_diversity

Description

The calculate_diversity function is designed to calculate landscape diversity metrics within a view-
shed. It takes as input a land cover raster, a viewshed object representing the observer’s line of sight,
and an optional parameter to compute class proportions.

Usage

calculate_diversity(viewshed, land, proportion = FALSE)

Arguments

viewshed Viewshed object.
land Raster. The raster of land use/land cover representing different land use/cover

classes.
proportion logical (Optional), indicating whether to return class proportions along with the

Shannon Diversity Index (SDI). (default is FALSE).

Value

List. a list containing the Shannon Diversity Index (SDI) and, if the proportion parameter is set to
TRUE, a table of class proportions within the viewshed.

calculate_feature 3

Examples

library(viewscape)
Load a viewpoint
test_viewpoint <- sf::read_sf(system.file("test_viewpoint.shp", package = "viewscape"))
load dsm raster
dsm <- terra::rast(system.file("test_dsm.tif", package ="viewscape"))
#Compute viewshed
output <- viewscape::compute_viewshed(dsm = dsm,

viewpoints = test_viewpoint,
offset_viewpoint = 6, r = 1600)

load landuse raster
test_landuse <- terra::rast(system.file("test_landuse.tif",

package ="viewscape"))
diversity <- viewscape::calculate_diversity(output,

test_landuse)

calculate_feature calculate_feature

Description

The calculate_feature function is designed to extract specific feature-related information within a
viewshed. It allows you to compute the proportion of the feature that is present in the viewshed.

Usage

calculate_feature(viewshed, feature, type, exclude_value)

Arguments

viewshed Viewshed object.

feature Raster. Land cover or land use

type Numeric. The input type of land cover raster. type=1: percentage raster (that
represents the percentage of area in each cell). type=2: binary raster (that only
uses two values to represent whether the feature exists in each cell).

exclude_value Numeric. the value of those cells need to be excluded in the analysis. If type =
2, exclude_value is reqired.

Value

Numeric. The canopy area in the viewshed.

4 calculate_viewmetrics

Examples

library(viewscape)
Load a viewpoint
test_viewpoint <- sf::read_sf(system.file("test_viewpoint.shp", package = "viewscape"))
load dsm raster
dsm <- terra::rast(system.file("test_dsm.tif", package ="viewscape"))
#Compute viewshed
viewshed <- viewscape::compute_viewshed(dsm = dsm,

viewpoints = test_viewpoint,
offset_viewpoint = 6)

load canopy raster
test_canopy <- terra::rast(system.file("test_canopy.tif",

package ="viewscape"))
calculate the percentage of canopy coverage
test_canopy_proportion <- viewscape::calculate_feature(viewshed = viewshed,

feature = test_canopy,
type = 2,
exclude_value = 0)

calculate_viewmetrics calculate_viewmetrics

Description

The calculate_viewmetrics function is designed to compute a set of configuration metrics based on
a given viewshed object and optionally, digital surface models (DSM) and digital terrain models
(DTM) for terrain analysis. The function calculates various metrics that describe the visibility
characteristics of a landscape from a specific viewpoint.The metrics include:

1. Extent: The total area of the viewshed, calculated as the number of visible grid cells multiplied
by the grid resolution

2. Depth: The furthest visible distance within the viewshed from the viewpoint

3. Vdepth: The standard deviation of distances to visible points, providing a measure of the
variation in visible distances

4. Horizontal: The total visible horizontal or terrestrial area within the viewshed

5. Relief: The standard deviation of elevations of the visible ground surface

6. Skyline: The standard deviation of the vertical viewscape, including visible canopy and build-
ings, when specified

7. Number of patches: Visible fragmentation measured by total visible patches with the views-
cape

8. Mean shape index: Visible patchiness based on average perimeter-to-area ratio for all views-
cape patches (vegetation and building)

9. Edge density: A measure of visible complexity based on the length of patch edges per unit
area

10. Patch size: Total average size of a patches over the entire viewscape area

calculate_viewmetrics 5

11. Patch density: Visible landscape granularity based on measuring patch density

12. Shannon diversity index: The abundance and evenness of land cover/use in a viewshed

13. Proportion of object: Proportion of a single type of land use or cover in a viewshed

Usage

calculate_viewmetrics(viewshed, dsm, dtm, masks = list())

Arguments

viewshed Viewshed object.

dsm Raster, Digital Surface Model for the calculation of

dtm Raster, Digital Terrain Model

masks List, a list including rasters of canopy and building footprints. For example of
canopy raster, the value for cells without canopy should be 0 and the value for
cells with canopy can be any number.

Value

List

References

Tabrizian, P., Baran, P.K., Berkel, D.B., Mitásová, H., & Meentemeyer, R.K. (2020). Modeling
restorative potential of urban environments by coupling viewscape analysis of lidar data with ex-
periments in immersive virtual environments. Landscape and Urban Planning, 195, 103704.

Examples

Load in DSM
test_dsm <- terra::rast(system.file("test_dsm.tif",

package ="viewscape"))
Load DTM
test_dtm <- terra::rast(system.file("test_dtm.tif",

package ="viewscape"))

Load canopy raster
test_canopy <- terra::rast(system.file("test_canopy.tif",

package ="viewscape"))

Load building footprints raster
test_building <- terra::rast(system.file("test_building.tif",

package ="viewscape"))

Load in the viewpoint
test_viewpoint <- sf::read_sf(system.file("test_viewpoint.shp",

package = "viewscape"))

Compute viewshed
output <- viewscape::compute_viewshed(dsm = test_dsm,

6 compute_viewshed

viewpoints = test_viewpoint,
offset_viewpoint = 6, r = 1600)

calculate metrics given the viewshed, canopy, and building footprints
test_metrics <- viewscape::calculate_viewmetrics(output,

test_dsm,
test_dtm,
list(test_canopy, test_building))

compute_viewshed compute_viewshed

Description

The compute_viewshed function is designed for computing viewsheds, which are areas visible from
specific viewpoints, based on a Digital Surface Model (DSM). It provides flexibility for single or
multi-viewpoint analyses and allows options for parallel processing, raster output, and plotting.

Usage

compute_viewshed(
dsm,
viewpoints,
offset_viewpoint = 1.7,
offset_height = 0,
r = NULL,
refraction_factor = 0.13,
method = "plane",
parallel = FALSE,
workers = 1,
raster = FALSE,
plot = FALSE

)

Arguments

dsm Raster, the digital surface model/digital elevation model

viewpoints sf point(s) or vector including x,y coordinates of a viewpoint or a matrix includ-
ing several viewpoints with x,y coordinates

offset_viewpoint

numeric, setting the height of the viewpoint. (default is 1.7 meters).

offset_height numeric, setting the height of positions that a given viewpoint will look at. (de-
faut is 0)

r Numeric (optional), setting the radius for viewshed analysis. (The default is
1000m/3281ft)

compute_viewshed 7

refraction_factor

Number, indicating the refraction factor. The refraction factor adjusts the effect
of atmospheric refraction on the apparent curvature of the Earth. In most stan-
dard applications, a refraction factor of 0.13 is used, and so does this function.
However, the appropriate refraction factor may vary depending on environmen-
tal conditions.

method Character, The algorithm for computing a viewshed: "plane" and "los" (see de-
tails). "plane" is used as default.

parallel Logical, (default is FALSE) indicating if parallel computing should be used to
compute viewsheds of multiview points. When it is TRUE, arguements ’raster’
and ’plot’ are ignored

workers Numeric, indicating the number of CPU cores that will be used for parallel com-
puting. It is required if ’parallel’ is ’TRUE’.

raster Logical, (default is FALSE) if it is TRUE, the raster of viewshed will be re-
turned. The default is FALSE

plot Logical, (default is FALSE) if it is TRUE, the raster of viewshed will be dis-
played

Details

For method, "plane" is the reference plane algorithm introduced by Wang et al. (2000) and "los"
is the line of sight algorithm (Franklin & Ray, 1994). The reference plane algorithm can be more
time-efficient than the line of sight algorithm, whereas the accuracy of the line of sight is better.

Value

Raster or list. For single-viewpoint analysis, the function returns either a raster (raster is TRUE)
or a viewshed object. Value 1 means visible while value 0 means invisible. For multi-viewpoint
analysis, a list of viewsheds is returned.

References

Franklin, W. R., & Ray, C. (1994, May). Higher isn’t necessarily better: Visibility algorithms and
experiments. In Advances in GIS research: sixth international symposium on spatial data handling
(Vol. 2, pp. 751-770). Edinburgh: Taylor & Francis.

Wang, J., Robinson, G. J., & White, K. (2000). Generating viewsheds without using sightlines.
Photogrammetric engineering and remote sensing, 66(1), 87-90.

See Also

fov_mask() visual_magnitude()

Examples

Load a viewpoint
test_viewpoint <- sf::read_sf(system.file("test_viewpoint.shp", package = "viewscape"))
load dsm raster
dsm <- terra::rast(system.file("test_dsm.tif", package ="viewscape"))

8 fov_mask

#Compute viewshed
output <- viewscape::compute_viewshed(dsm = dsm,

viewpoints = test_viewpoint,
offset_viewpoint = 6, r = 1600)

fov_mask fov_mask

Description

The fov_mask function is designed to subset a viewshed based on its viewpoint and the field of view

Usage

fov_mask(viewshed, fov)

Arguments

viewshed viewshed object, generated by compute_viewshed()

fov Vector, specifying the field of view with two angles in degree (e.g. c(10,100))
for masking a viewshed based on its viewpoints. See details.

Details

For defining the field of view (’fov’), angles range from 0 to 360 degrees, with 0 inclusive and 360
exclusive. The initial angle must be smaller than the terminal angle in the sequence c(a,b) (a < b).
To capture the northeast quadrant of a viewshed, one would use c(0,90), while the eastern quadrant
would be delineated by c(45,315) as shown below:

135 90 45
180 v 0
225 270 315

Here, ’v’ represents the viewpoint, with angles measured counterclockwise from due north.

Value

viewshed object

See Also

compute_viewshed()

Viewshed-class 9

Examples

Load a viewpoint
test_viewpoint <- sf::read_sf(system.file("test_viewpoint.shp", package = "viewscape"))
load dsm raster
dsm <- terra::rast(system.file("test_dsm.tif", package ="viewscape"))
Compute viewshed
viewshed <- viewscape::compute_viewshed(dsm,

viewpoints = test_viewpoint,
offset_viewpoint = 6)

subset viewshed using the field of view
out <- viewscape::fov_mask(viewshed, c(40,160))

Viewshed-class An S4 class to represent the viewshed

Description

A viewshed object contains a ’matrix’ of visible and invisible area, resolution, extent, and crs

Slots

visible matrix

resolution vector

extent numeric

crs character

visualize_viewshed visualize_viewshed

Description

The visualize_viewshed function is designed for the visualization of a viewshed analysis, providing
users with various options for visualizing the results. The function works with a viewshed object
and offers multiple plotting and output types.

Usage

visualize_viewshed(viewshed, plottype = "", outputtype = "")

Arguments

viewshed Viewshed object

plottype Character, specifying the type of visualization ("polygon" or "raster").

outputtype Character, specifying the type of output object ("raster" or "polygon").

10 visual_magnitude

Value

Visualized viewshed as either a raster or polygon object, depending on the outputtype specified.

Examples

Load a viewpoint
test_viewpoint <- sf::read_sf(system.file("test_viewpoint.shp", package = "viewscape"))
load dsm raster
dsm <- terra::rast(system.file("test_dsm.tif", package ="viewscape"))
#Compute viewshed
viewshed <- compute_viewshed(dsm = dsm,

viewpoints = test_viewpoint,
offset_viewpoint = 6)

Visualize the viewshed as polygons
visualize_viewshed(viewshed, plottype = "polygon")
Visualize the viewshed as a raster
visualize_viewshed(viewshed, plottype = "raster")
Get the visualized viewshed as a polygon object
polygon_viewshed <- visualize_viewshed(viewshed,

plottype = "polygon",
outputtype = "polygon")

visual_magnitude visual_magnitude

Description

This function is still in progress. Visual Magnitude quantifies the extent of a visible region as
perceived by an observer. It is derived from the surface’s slope and angle features, alongside the
observer’s relative distance from the area (Chamberlain & Meitner).

Usage

visual_magnitude(viewshed, dsm)

Arguments

viewshed Viewshed object.

dsm Raster, the digital surface / elevation model

Value

SpatRaster

References

Chamberlain, B. C., & Meitner, M. J. (2013). A route-based visibility analysis for landscape man-
agement. Landscape and Urban Planning, 111, 13-24.

visual_magnitude 11

See Also

compute_viewshed()

Examples

Load a viewpoint
test_viewpoint <- sf::read_sf(system.file("test_viewpoint.shp", package = "viewscape"))
load dsm raster
dsm <- terra::rast(system.file("test_dsm.tif", package ="viewscape"))
Compute viewshed
viewshed <- viewscape::compute_viewshed(dsm = dsm,

viewpoints = test_viewpoint,
offset_viewpoint = 6)

Compute visual magnitude
vm <- viewscape::visual_magnitude(viewshed, dsm)

Index

calculate_diversity, 2
calculate_feature, 3
calculate_viewmetrics, 4
compute_viewshed, 6
compute_viewshed(), 8, 11

fov_mask, 8
fov_mask(), 7

Viewshed-class, 9
visual_magnitude, 10
visual_magnitude(), 7
visualize_viewshed, 9

12

	calculate_diversity
	calculate_feature
	calculate_viewmetrics
	compute_viewshed
	fov_mask
	Viewshed-class
	visualize_viewshed
	visual_magnitude
	Index

